FANDOM


See also:

Template:Periodic table (Allotropes)
Template:Periodic table

#bottom
Electrons exist as "clouds" of charge surrounding the positively charged nucleus. In the Bohr model each cloud is prevented from collapsing into the nucleus by its Clifford rotation. In reality only the 2 electrons of the lowermost cloud (n = 1) are supported in this way. All other clouds (n > 1) are resting on top the the ground shell; repelled from the ground shell by some sort of quantum force. The angular momentum of the electron = ħ.

The 1n shell consists of the 1s orbital.
The 2n shell consists of the 2p and 2s orbitals.
The 3n shell consists of the 3d, 3p and 3s orbitals.
The 4n shell consists of the 4f, 4d, 4p and 4s orbitals.

n + gives the order in which the orbitals are filled.
n + probably corresponds to the charge distribution of the electron.
The orbitals with the largest n correspond to the outer solid "surface" of the atom (where the valence electrons are located). The charge of the electrons can, and normally does, exist well outside of this solid "surface".
N+L rule

The s orbital ( = 0) consists of only the s 12 orbital.
The p orbital ( = 1) splits into p 12 and p 32.
The d orbital ( = 2) splits into d 32 and d 52.
The f orbital ( = 3) splits into f 52 and f 72.
This is known as the Fine structure.

s 12 and p 12 have almost the same "energy" level. (See Lamb shift)
p 32 and d 32 have the same "energy" level (ie. frequency).
d 52 and f 52 have the same "energy" level.


In the presence of a magnetic field each of the above levels splits into many separate "energy" levels.
This is called the Zeeman effect and it results in the Hyperfine structure.
In low magnetic fields (The left side of the image below) the Hyperfine structure corresponds to mj.
In high magnetic fields (The right side of the image below) electrons with opposite spins (ms) become separated and the Hyperfine structure corresponds to m.
m + ms = mj. See Spin–orbit coupling and Angular momentum coupling
Note the one electron that switches from one group to the other.
Breit-rabi-Equation2
It is actually the "normal" Zeeman effect that is Anomalous.
The "normal" Zeeman effect appears to be due to hybridization.
Breit-rabi-Equation
The radial quantum number nr is equal to the number of nodes in the radial wavefunction.

nr = n - - 1


Not all transitions between orbitals are allowed. See Selection rule.

Note: The atoms of a diamond cubic crystal are not all the same size. There are 2 different sizes. The large atoms form an fcc crystal and the smaller atoms occupy the large voids.

Chart below:

Atomic Number
Element symbol
Atomic mass
Allotrope:Atomic Radius
Crystal lattice
Atomic packing factor
Vertical axis = n +
Background color indicates how far the crystal structure is from close packed. In other words, how distorted the lattice is.
Atomic radius is calculated from the Atomic volume.
Atomic volume is calculated by dividing the Atomic mass by the Density and multiplying by the Atomic packing factor.
Acceptor
(P-type)
Semi-
conductor
Donor
(N-type)
Note that due to sp3 hybridization the 
end wraps back around to the beginning ↘ 
Strong magnetic field -12 -32 -32 -12 12 32 32 12 m
"normal" Zeeman effect → sp3 hybridization? →   -12 -12 12 12 12 12 -12 -12 ms
Weak magnetic field -1 -2 -1 0 1 2 1 0 mj
m + ms = mj
 
Note the one electron that
switches from orange to yellow
3 2 1 0
m 3 2 1 0 -1 -2 -3 -3 -2 -1 0 1 2 3 2 1 0 -1 -2 -2 -1 0 1 2 1 0 -1 -1 0 1 0 0 m
ms -12 -12 -12 -12 -12 -12 -12 12 12 12 12 12 12 12 -12 -12 -12 -12 -12 12 12 12 12 12 -12 -12 -12 12 12 12 -12 12 ms
mj 52 32 12 -12 -32 -52 -72 -52 -32 -12 12 32 52 72 32 12 -12 -32 -52 -32 -12 12 32 52 12 -12 -32 -12 12 32 -12 12 mj
J 52 72 32 52 12 32 12 J
f 52 f 72 d 32 d 52 p 12 p 32 s 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 1 2
8
89
Ac
227.0278
1.8829 Å
fc-c
0.74
90
Th
232.0377
α:1.8027 Å
fc-c
0.74
β:1.7848 Å
bc-c
0.68
91
Pa
231.0359
α:1.6112 Å
bc-t(0.82)
0.696
92
U
238.0289
α:1.1358 Å
bc-ortho
0.293
β:1.4457 Å
unknown
0.547
γ:1.5304 Å
bc-c
0.68
93
Np
237.0482
α:1.4918 Å
bc-ortho
0.717
β:1.3882 Å
unknown
0.547
γ:1.5278 Å
bc-c
0.68
94
Pu
244.0642
α:0.9662 Å
mono(102°)
0.183
β:1.3733 Å
ec-mono
0.47
γ:1.5951 Å
fc-ortho
0.357
δ:1.6556 Å
fc-c
0.74
δ':1.6366 Å
bc-t(1.33)
0.72
ε:1.59 Å
bc-c
0.68
95
Am
243
α:1.7393 Å
dh-cp
0.74
96
Cm
247
α:1.7409 Å
dh-cp
0.74
β:1.7464 Å
fc-c
0.74
97
Bk
247
α:1.7037 Å
dh-cp
0.74
98
Cf
251
α:1.7014 Å
dh-cp
0.74
99
Es
252
2.036 Å
fc-c
0.74
100
Fm
257
101
Md
258
102
No
259
  
103
Lr
266
104
Rf
267
105
Db
268
106
Sg
269
107
Bh
270
108
Hs
277
109
Mt
278
110
Ds
281
111
Rg
282
112
Cn
285
  
113
Nh
286
114
Fl
289
115
Mc
290
116
Lv
293
117
Ts
294
118
Og
294
   Alkali
metals
Alkaline
earth
metals
8
7
57
La
138.9055
α:1.8824 Å
dh-cp
0.74
58
Ce
140.116
β:1.8373 Å
dh-cp
0.74
γ:1.8296 Å
fc-c
0.74
59
Pr
140.9077
α:1.8331 Å
dh-cp
0.74
60
Nd
144.242
α:1.8266 Å
dh-cp
0.74
61
Pm
144.9128
α:1.8164 Å
dh-cp
0.74
62
Sm
150.36
α:1.8075 Å
tri-cp
0.74
63
Eu
151.964
1.9893 Å
bc-c
0.68
64
Gd
157.25
1.8072 Å
h-cp
0.74
65
Tb
158.9254
1.7863 Å
h-cp
0.74
66
Dy
162.5
1.7795 Å
h-cp
0.74
67
Ho
164.9303
1.7704 Å
h-cp
0.74
68
Er
167.259
1.7613 Å
h-cp
0.74
69
Tm
168.9342
1.7508 Å
h-cp
0.74
70
Yb
173.054
1.9467 Å
fc-c
0.74
71
Lu
174.9668
1.7391 Å
h-cp
0.74
72
Hf
178.49
1.5854 Å
h-cp
0.74
73
Ta
180.9479
1.4342 Å
bc-c
0.68
74
W
183.84
1.3744 Å
bc-c
0.68
75
Re
186.207
1.3789 Å
h-cp
0.74
76
Os
190.23
1.3561 Å
h-cp
0.74
77
Ir
192.217
1.3613 Å
fc-c
0.74
78
Pt
195.084
1.3912 Å
fc-c
0.74
79
Au
196.9666
1.446 Å
fc-c
0.74
80
Hg
200.592
α:1.5118 Å
rhomb(71°)
0.608
81
Tl
204.3835
1.7209 Å
h-cp
0.74
82
Pb
207.2
1.7552 Å
fc-c
0.74
83
Bi
208.9804
1.8107 Å
rhomb(57°)
0.696
84
Po
208.9824
α:2.382 Å
fcc+alv
0.74
85
At
209.9871
2.1393 Å
fc-c
0.74
86
Rn
222.0176
2.4629 Å
fc-c
0.74
87
Fr
223.0197
88
Ra
226.0254
2.2356 Å
bc-c
0.68
7
6 Actinide
Lanthanide (Rare-earth element)
39
Y
88.9058
1.8056 Å
h-cp
0.74
40
Zr
91.224
1.6071 Å
h-cp
0.74
41
Nb
92.9064
1.4332 Å
bc-c
0.68
42
Mo
95.95
1.3666 Å
bc-c
0.68
43
Tc
97.9072
1.3637 Å
h-cp
0.74
44
Ru
101.07
1.3425 Å
h-cp
0.74
45
Rh
102.9055
1.3486 Å
fc-c
0.74
46
Pd
106.42
1.3794 Å
fc-c
0.74
47
Ag
107.8682
1.4487 Å
fc-c
0.74
48
Cd
112.414
1.567 Å
h-cp
0.74
49
In
114.818
1.4527 Å
fc-t(1.52)
0.487
50
Sn
118.71
α:2.3009 Å
d-c
0.74
β:1.5951 Å
fc-t(0.55)
0.623
51
Sb
121.76
1.7147 Å
rhomb(57°)
0.695
52
Te
127.6
1.627 Å
rhomb(87°)
0.526
53
I
126.9045
2.1828 Å
fc-ortho
0.507
54
Xe
131.293
2.3641 Å
fc-c
0.74
55
Cs
132.9055
2.6667 Å
bc-c
0.68
56
Ba
137.327
2.1796 Å
bc-c
0.68
6
5
21
Sc
44.9559
1.6458 Å
h-cp
0.74
22
Ti
47.867
1.4655 Å
h-cp
0.74
23
V
50.9415
1.3128 Å
bc-c
0.68
24
Cr
51.9961
1.2527 Å
bc-c
0.68
25
Mn
54.938
α:1.2598 Å
bc-c
0.68
β:1.2728 Å
bc-c
0.68
γ:1.3695 Å
fc-c
0.74
δ:1.338 Å
bc-c
0.68
26
Fe
55.845
1.2448 Å
bc-c
0.68
27
Co
58.9332
1.2546 Å
h-cp
0.74
28
Ni
58.6934
1.2495 Å
fc-c
0.74
29
Cu
63.546
1.2817 Å
fc-c
0.74
30
Zn
65.38
1.3946 Å
h-cp
0.74
31
Ga
69.723
α:1.6034 Å
fc-ortho
0.437
32
Ge
72.63
2.0061 Å
d-c
0.74
33
As
74.9216
α:1.4974 Å
rhomb(54°)
0.647
34
Se
78.971
grey:1.5111 Å
rhomb(93°)
0.526
35
Br
79.904
2.0245 Å
fc-ortho
0.526
36
Kr
83.798
2.1745 Å
fc-c
0.74
37
Rb
85.4678
2.4774 Å
bc-c
0.68
38
Sr
87.62
2.1576 Å
fc-c
0.74
5
4 Rare-earth
element
Transition metals 18-electron rule Noble
metals

Very high
thermal
conductivity
Very low
boiling
point
13
Al
26.9816
1.4358 Å
fc-c
0.74
14
Si
28.085
1.9257 Å
d-c
0.74
15
P
30.9738
α:1.6482 Å
bc-c
0.68
β:0.9524 Å
triclinic
0.138
γ:1.5067 Å
unknown
0.547
black:1.3763 Å
fc-ortho
0.285
red:1.0477 Å
mono(106°)
0.219
16
S
32.0675
α:1.6502 Å
fc-ortho
0.362
β:1.5014 Å
mono(93°)
0.477
17
Cl
35.4515
1.9767 Å
fc-ortho
0.518
18
Ar
39.948
2.0389 Å
fc-c
0.74
19
K
39.0983
2.3137 Å
bc-c
0.68
20
Ca
40.078
1.9815 Å
fc-c
0.74
4
3
Atomic radii
5
B
10.8135
α:1.0747 Å
rhomb(58°)
0.708
β:1.071 Å
rhomb(65°)
0.665
6
C
12.0106
Di:1.2647 Å
d-c
0.74
Gr:0.7125 Å
graphite
0.256
7
N
14.0069
1.725 Å
h-cp
0.74
8
O
15.9994
2.025 Å
fcc+alv
0.74
9
F
18.9984
1.9553 Å
fcc+alv
0.74
10
Ne
20.1797
1.7043 Å
fc-c
0.74
11
Na
22.9898
1.8632 Å
bc-c
0.68
12
Mg
24.3055
1.6062 Å
h-cp
0.74
3
2 Octet rule Halogens Noble
Gases
3
Li
6.9675
1.5259 Å
bc-c
0.68
4
Be
9.0122
1.1306 Å
h-cp
0.74
2
1
1
H2
1.008
1.9002 Å
h-cp
0.74
2
He
4.0026
1.8506 Å
h-cp
0.74
1

ξ = c/(2a √8/√3)-1

Purge

References Edit

Data retrieved from *http://wwwhomes.uni-bielefeld.de/achim/ele_structures.html which lists as its references:

Platinum Metals Rev., 1989, V. 33, (1), p. 14-16 "Densities of Osmium and Iridium", By J. W. Arblaster